Focussed dynamic programming : extensive comparative results
نویسندگان
چکیده
We present a heuristic-based propagation algorithm for solving restricted Markov decision processes (MDPs). Our approach, which combines ideas from deterministic search and recent dynamic programming methods, focusses computation towards promising areas of the state space. It is thus able to significantly reduce the amount of processing required in producing a solution. We present a number of results comparing our approach to existing algorithms on a robotic path planning domain.
منابع مشابه
Mathematical Programming Approach To Allocate Local Or National Resources For Bridge Maintenance Rehabilitation & Replacement Planning (RESEARCH NOTE)
Today’s, the transportation facilities such as terminals, street, bridge, etc, represent the major investment in highway network. Every year tremendous resources should be invested to maintain these facilities. Among them, the Bridge Management System (B.M.S.) has been necessitated by large imbalance between extensive bridge repair and maintenance needs and limited available budget. So the main...
متن کاملAn improved memetic algorithm to minimize earliness–tardiness on a single batch processing machine
In this research, a single batch processing machine scheduling problem with minimization of total earliness and tardiness as the objective function is investigated.We first formulate the problem as a mixed integer linear programming model. Since the research problem is shown to be NP-hard, an improved memetic algorithmis proposed to efficiently solve the problem. To further enhance the memetic ...
متن کاملBankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملStochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry
We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...
متن کاملAn Optimal Tax Relief Policy with Aligning Markov Chain and Dynamic Programming Approach
Abstract In this paper, Markov chain and dynamic programming were used to represent a suitable pattern for tax relief and tax evasion decrease based on tax earnings in Iran from 2005 to 2009. Results, by applying this model, showed that tax evasion were 6714 billion Rials**. With 4% relief to tax payers and by calculating present value of the received tax, it was reduced to 3108 billion Rials. ...
متن کامل